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Outline 

•  General considerations on energy efficiency and 
environmental impact 

•  Data centers and cloud computing: an analysis of the problem 
•  Assessment 
•  Measuring 
•  Optimization: a focus on the application level and adaptive 

approaches 
•  Future research 
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GAMES: Green active management of energy in IT service 
centres 

FP7 EU Project 2010-12  
http://www.green-datacenters.eu/ 
Goal: Energy efficiency in datacenters 

 
Consortium 

Engineering Ingegneria Informatica (I)  
University Politecnico di Milano (I) 
University University of Stuttgart (D) 
University Technical University of Cluj-Napoca (Romania)  
IBM Haifa Energy-aware storage management 
christmann informationstechnik + medien GmbH & Co. KG (D)   
EnergoEco (Romania)  
EnelSI (I) 
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ECO2CLouds: Experimental Awareness of CO2 in 
Federated Cloud Sourcing 
 
FP7 EU Project (STREP) 2012-2014 
Web site: http://eco2clouds.eu 
Goal: energy efficiency and reduction of CO2 emissions in 
federated clouds 
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COST	Ac/on	IC1304		
	
Autonomous	Control	for	a	Reliable	Internet	of	Services		
2013-2017	
	
Coordinated	by		
MC	Chair:	Rob	van	der	Mei	(CWI	/	VU	Amsterdam)		
MC	Vice-Chair:	Hans	van	den	Berg	(TNO	/	UT)		
	
hLp://www.cost-across.nl/	
	

Barbara Pernici 

December	2008:	Council	and	Parliament	adopted	
the	Climate	and	Energy	Package	that	reinforces	
Europe’s	commitment	to:	

●	A	reduc/on	in	EU	greenhouse	gas	emissions	of	at	
least	20%	below	1990	levels	
●	 20%	 of	 EU	 energy	 consump/on	 to	 come	 from	
renewable	resources	
●	A	20%	reduc/on	in	primary	energy	use	compared	
with	 projected	 levels,	 to	 be	 achieved	by	 improving	
energy	efficiency.	

	
European Commission 
DG Information Society and 
Media, Unit H4 

Policy: Three 20% targets for 2020 
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Energy 
Reductions 

enabled by ICT 

Energy 
Consumption 

of ICT solutions 
~8% of total electricity consumption 

~15% by 2020 

Sources: Pickavet & all (UGent-IBBT) Source: An ICT policy agenda to 2015 for Europe (Swedish Presidency) 
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European Commission 
DG Information Society 
and Media, Unit H4 

Barbara Pernici 

Focus on ICT 

  
Problem statement 
 
•  Make a more energy efficient use of resources 
 
•  Consider energy mix 
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Sources: Pickavet & all (UGent-IBBT) 
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Datacenters 
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IT	
Components	

HVAC	and	
infrastructure	
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The Cloud service model 11	

Infrastructure 
as a Service

Applications 
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Servers and Storage 
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Environmental impact 
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Source	HRLS		

hLp://www.rte-france.com/fr/eco2mix/eco2mix	
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Questions 

•  How	much	does	an	applicaAon	consume?	

•  What	is	its	environmental	impact?	

•  What	can	be	done	to	improve	energy	efficiency	and	reduce	
environmental	impact?	
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From the energy awareness to the environmental awareness 14	

www.telegraph.co.uk
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Assessment 

15	

Best	prac/ces	Maturity	models	

Green	IT	

Assessment	 Improvement	Measurement	

Vitali-Pernici	IJCIS	2014	

EU	Code	of	Conduct	
For	energy	efficiency	
in	data	centers	

DCMM	–	The	Green	Grid	

Measurement 
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Green	IT	

Assessment	 Improvement	Measurement	

Energy	es/ma/on	Indicators	
defini/on	
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PUE 

PUE 
Power Usage Effectiveness  
The green Grid, 2007 

 
 
 
 
PUE= Total Facility Power / IT Equipment Power 

 
 
how efficiently the electricity is used from the data center control volume 
to the IT Equipment 
The Green Grid in Europe showed that more than 50% of data center 
operators do not track their installations (source TGG 2015) 
Average around 1.8, best ones (Google, Facebook)  claim approx 1.06 
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IT	
Components	

HVAC	and	
infrastructure	
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GAMES GPIs for data centers 

19 

Kipp et al., Future Generation Computer Systems, 2011 
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The layered set of metrics: Overview 

 
 
 
 
 
 
 
 
Application profile for case studies has been refined 

–  Used by the ECO2Clouds Portal and Scheduler 

Metric set finalized: 
•  Infrastructure layer 

•  Site level 
•  Physical host level 
•  Energy mix 

•  Virtual layer 
•  Application layer 

Ø  Energy resources 
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Infrastructure Layer 
Virtual Layer Application Layer 

Energy mix 
metrics  

(dynamic / static) Host Level Site Level 

Power consumption Site utilization CPU usage  Task execution time Energy Mix 

Disk IOPS Storage utilization Storage usage Application 
execution time  

Grid total 

CPU utilization Availability I/O usage 
 

Power consumption Imported / Exported 

Availability PUE Memory usage  Response Time 
 

Produced CO2 

Power consumption  Throughput 

Disk IOPS A-PUE (Application 
PUE) 

Application Energy 
Productivity (A-EP) 

Application Green 
Efficiency (A-GE) 

The layered set of metrics: Metrics set  
 

ECO2Clouds	metrics	
	
BonFIRE	metrics	
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Monitoring environment realisation:   
Accounting Service basics 

22	 Barbara Pernici 

Monitoring characteristics / meta-data 

 
-  Sampling frequency 

-  Where it is controlled 
-  Close to the data 

-  Quality of monitored data 
-  Timeliness 
-  Accuracy 
-  Completeness 
-  Availability 
-  …. 
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An example - accuracy 

24	

Kurt	Tutschku	et	al.,	On	Resource	Descrip?on	Capabili?es	of	On-Board	Tools	for		
Resource	Management	in	Cloud	Networking	and	NFV	Infrastructures,	O4SDI	2016	
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Selecting monitoring variables 

Monitored dimensions can be many…. 
 
E.g. Cloudera 
 
106 categories of metrics 
 
Sampling rate for all metrics one minute 
Aggregation functions applied 
Storage is limited 
 
New level: service level (e.g. Hadoop) 
 

25	
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Selecting monitoring dimensions – a goal oriented approach 

Each indicator is associated with thresholds indicating its 
maximum and minimum desired value.  
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Learning relations between goals 

27	

Monica	Vitali,	Barbara	Pernici,	Una-May	O'Reilly:	
Learning	a	goal-oriented	model	for	energy	efficient	adap/ve	applica/ons	in	data	centers.	
	Inf.	Sci.	319:	152-170	(2015)	

Barbara Pernici 28	

Vitali	et	al.,	2015	

Barbara Pernici 

Energy estimation 

Fig. 2. A system and (sub)systems.

Fig. 3. Critical points within a system where energy is lost or wasted.

certain task, where a task is an abstract assignment that the system has to perform to
fulfil its purpose. To improve the energy efficiency of a system, first it is necessary to
identify problems that degrade efficiency.

Therefore, we identify two critical points where energy is not used in an efficient
way but is instead lost or wasted. Both terms define inefficient use of energy from an
agnostic point of view, where energy loss refers to energy brought to the system but
not consumed for its main task (e.g., energy lost due to transport and conversion). This
also includes energy used by supporting subsystems, such as cooling or lighting within
a data center whose main task is the provision of cloud services. Energy waste refers
to energy used by the system’s main task but without useful output (e.g., energy used
while running in idle mode). Additionally, useless work by the system is also considered
energy waste; for example, for a cooling subsystem, this would mean keeping the cooling
at maximum during the night when temperatures are lower. Both critical points are
shown in Figure 3.

Based on these definitions, two goals are defined for reducing energy loss and two
goals for reducing energy waste, thus improving the energy efficiency:

—L1. The first goal is minimizing a percentage of input energy that is not consumed
by a subsystem. This can be done by implementing more efficient components (e.g.,
using more efficient power supply units for servers that leak less energy).

—L2. The second goal is to reduce the overhead of supporting systems (i.e., systems
that do not perform the main task of the system), for example, by implementing a
single cooling unit for the entire cabinet instead of cooling each rack server separately.

—W1. The third goal is to reduce idle run of the system and increase utilization
or achieve zero energy consumption when no output is produced (i.e., during idle
time). This also implies achieving a proportional increase of energy consumption
with system output (e.g., to provide twice as much bandwidth, a network router
requires twice the amount of energy or less).

—W2. The fourth goal is to minimize energy consumption where the system performs
redundant operations. This can be done by implementing smart functions and
subsystems, such as implementing an optimized algorithm that does not require
redundant steps to perform the same task.

The listed goals are taken as a basis for the literature review in our search to
find current as well as future research directions that focus on improving the energy
efficiency of cloud computing infrastructure. Figure 4 shows data center domains and
their energy cascades as they are covered in this article, starting with Network and

29	

Toni	Mastelic,	Ariel	Oleksiak,	Holger	Claussen,	Ivona	Brandic,	Jean-Marc	Pierson,	et	al..	Cloud	
compu/ng:	survey	on	energy	efficiency.	ACM	Compu/ng	Surveys,	Associa/on	for	Compu/ng	
Machinery,	2015,	Vol.	47	(n	2),	pp.	1-36	
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WHAT can be measured and WHERE? 

Which components should be considered 
 

Servers  
 percentage of total consumption  
 at PDU 
 on rack 

 
And for Virtual Machines … 

 cannot be measured directly 
 many VMs on a server 
 how to account for idle times 

 
 several models: 
 - based on load 
 - hypotheses on interference, on how idle power is distributed 
 - energy vs power models 

  
  

30	 Barbara Pernici 31	

Green	IT	

Assessment	 Improvement	Measurement	
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Use of metrics 

Assessment/awareness 
Decision making/configuration/adaptivity 
 
 

Vitali-Pernici	IJCIS	2014	
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Main research topics 

At application/virtualization levels 
 
•  Optimal allocation of VMs  
 
•  Optimize usage of resources 

•  Which resources 
•  Idle times attribution 
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Adaptive approach in ECO2Clouds 

34	

Monitoring	system	

CLOUD	

Collec?ng		
and	Sending	informa?on	to	controllers	

Energy-aware	
“Controllers”	

Metrics	

Knowledge	

AdaptaAon	
acAons	
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Process design  
optimization lifecycle 

Step 4. Execution and MonitoringStep 2. Process Deployment

Step 1. Process Design

T1

T2

T3

T4

T1
T2

T3
T4

VM1 VM2 VM3 VM4

Step 3. VM Deployment

T1
T2

T3
T4

VM1 VM2 VM3 VM4

PH1 PH2 VM3

T1
T2

T3
T4

VM1 VM2 VM3 VM4

PH1 PH2 VM3 M
on

ito
rin

g 
sy

st
em

Step 5. Optmization

Monitored 
data

Optimization function

Adaptation 
actions

VM configurations
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ECO2Clouds Architecture 
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Energy-aware scheduling 

37	

Wajid	et	al,	IEEE	TCC,	in	press	
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Application-level adaptation: 
Application controllers 

38	

Cappiello	et	al,	IEEE	TCC,	in	press	

+	Applica/on	profile	
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Case study – workflow rearrangement 
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Cappiello	et	al,	IEEE	TCC,	in	press	
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Focus on CO2 emissions 

Multiple sites 
Different energy mix 
Variable/constant energy mix 
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Immediate site selection 

Check	site	availability	

Calculate	CO2	emissions	

Site	selec/on	
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Immediate site selection 
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Execution Shifting 

43 

Define	the	best	star/ng	point	

Calculate	CO2	emissions	

Site	selec/on	

Cappiello	et	al.,	ICT4S,	2014	
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Analysis of Energy mix values 
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Execution shifying 
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Fig. 4. A detailed view of the trend of emissions factor (gCO2e/kWh) for
Germany and UK

However, resources can also be unavailable for that site, and
a comparison is needed for the remaining two sites.

Let us consider a scenario (Case A) where the user asks to
deploy an application on Thursday 19th of January at 4:00 p.m.
The application requires to be executed for 3 hours and we
estimate an energy consumption of 3 kWh (we assume that the
considered sites are equivalent from the performance point of
view). When the request arrives, resources are available only in
UK and Germany, so the set of available sites S0 is composed
of only two sites. A detailed view of the two patterns can be
seen in Fig. 4. The estimation for the immediate execution on
each site in S0 results in 1706 gCO2e for UK and 1509 gCO2e
for Germany. According to this, the cloud provider decides
to deploy the application in Germany. To demonstrate the
effectiveness of the decision we have computed which would
have been the actual emission of the application using the
available data for the considered date. The real consumption
in the UK resulted to be 1677 gCO2e and thus the actual
saving is 168 gCO2e. Let us consider the same scenario but
when the request arrives at 4:00 a.m. of Saturday 21th. In
this case (Case B), estimated emissions are equal to 1469.5
gCO2e for UK and 1509 gCO2e for Germany. The best choice
consists in deploying the application in UK where with the real
consumption of 1349.5 gCO2e it is possible to save 159.5
gCO2e, even if at the time of the request, Germany had a
better emission rate.

B. Execution shifting validation

In this paragraph we validate the second part of the ap-
proach, where the customer agrees to postpone the deployment
of his application. In order to avoid redundancy we analyze the
situation on a single site and for this evaluation we refer to
data collected for emissions in France, as shown in Fig. 3.
However, the same procedure should be repeated at each
site, as discussed in Sec. V-B. Let us consider the same
scenario discussed in the previous paragraph where a request
arrives on Thursday 19th of January at 4:00 p.m. The user
specifies his availability in postponing the execution with a
maximum delay of 48 hours. From an analysis of the trend, the
execution shifting algorithm proposes several solutions to the
user. The first solution consists in the immediate deployment,
with an estimated emission of 209.7 gCO2e. The second

TABLE II
COMPARISON OF EXECUTION SHIFTING OUTCOMES

Delay Estimated gCO2e Real gCO2e Saving (%)

Solution 1 0 209.7 200.3 -

Solution 2 10h 185.4 167.1 16.6%

Solution 3 27h 143.2 140.3 30%

solution consists in delaying the execution of 10 hours, by
deploying the application on Friday 20th at 2:00 a.m. In this
case, the estimated saving is 24.35 gCO2e. The last solution
propose the execution in the week end, starting at 7:00 a.m.
of Saturday 21st, with a delay of 27 hours and an estimated
saving of 66.5 gCO2e. The user can decide which solution is
better according to his needs. In Tab. II the three solutions
are compared. The table reports both the estimated and the
real values for CO2 emissions for the three solutions. In the
last column it is possible to see the saving in emissions that
is obtained when delaying the application deployment. This
value is obtained by comparing the effective emissions of the
solution to the outcome of the immediate deployment. In this
specific example, the algorithm can reduce the emissions of
the 30%.

VII. CONCLUDING REMARKS

This paper introduce an approach for considering CO2
emissions as a relevant dimension to be considered when
applications have to be deployed in a federated cloud. Based
on the experience gained in the ECO2Clouds project, the paper
proposed a method to analyze the energy mix to discover
patterns that can be used to optimize the deployment phase.
Moreover, the paper introduces a site selection algorithm
that considers CO2 emissions in two cases: an immediate
deployment and a delayed deployment. A validation scenario
based on real data publicly available on the energy mix of
France and UK shows how energy savings can be obtained by
following appropriate deployment strategies.

Next steps in this research will take into account the impact
of different energy sources from cradle to cradle. This means,
for instance, that the nuclear power will not be considered as a
green energy source. In fact, while CO2 emissions of nuclear
power plants are negligible during the operational phase, plant
construction and decommissioning after end of life cause
considerable impacts, as does the storage and management
of nuclear waste. Risks associated to different energy sources
is another crucial point that should be considered in future
analysis. Users might indeed prefer to avoid choosing cloud
sites fed with energy sources perceived as possible causes of
severe environmental contamination in case of accident.
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19th of January 2012 – 4pm 
Application: 3 hours – 3kWh 

Cappiello	et	al.,	ICT4S,	2014	
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Future research challenges 

Measurements 
 

 what to measure? Context dependent? 
 precision of measurements? 

 
 
Research trends: 
-  Mining from logs 
-  Relating measures 
-  Evaluate variable relations 
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Future research challenges 

Applications 
 

 profiling  
 - CPU, memory, I/O, variability 

 
Research trends: 
-  Define characteristics 
-  Dynamical assessment 
-  Heterogeneous underlying environments 
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Future research challenges 

Optimization/improvement 
 

 TCO (considering also resiliency, see EU Code of conduct, 
 Green Grid) 

 
 energy vs environmental impact 

 
 design and adaptation, dynamical evolution 

 
Future trends 

 continuous reduction of idle power 
 IoT, big data applications 
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Future research challenges 

Greening big data  
-  Data acquisition, storage 
-  Data analytics 
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Fig. 1. Three-layer big data.

security supports, and technical trainings. An overview of the
three layers for big data is illustrated in Fig. 1.

III. GREEN ISSUES

A. Origin and our Definition of Green Issues

This section investigates what are green issues. In many re-
cent literatures, people have addressed green issues simply as
the synonyms of either energy efficiency (EE) and/or energy
consumption reductions. However, those understandings are in-
correct, even if energy relevant issues are recently dominant
aspects in the green fields. To understand the relevant concepts,
we would explore the relevant history of the term “green,” which
actually was dated back from the origin of the concept “green
revolution.”

In a narrow sense, the green revolution refers to a series of
research, development, and technology initiatives to increase
agriculture (in more narrower sense, rice, wheat, and maize)
production, particularly in the developing countries, most no-
tably in the late 1960s. Both the start time of the green revolution,
more accurately, the first generation green revolution, have not
been uniquely recognized. Many literatures thought that the start
time of the green revolution was dated back to the year of 1943
when, in Mexico [9], Rockefeller Foundation started to sponsor
a wheat and maize improvement program led by N. Borlaug,
called “Father of the Green Revolution,” who won the Nobel
Peace Prize in 1970 for his significant contributions to support
achieving food self-sufficiency and save around a billion peo-
ple from hunger and famine via highly efficient high-yielding
varieties of cereal grains and other agriculture techniques, such
as irrigation increases, synthetic fertilizers, and pesticides [10].
Some other literatures thought that the start time of the green
revolution was around 1930s due to the pioneer works on high-
yielding varieties of the agrarian geneticist N. Strampelli, while
some literatures treated N. Strampelli as the forerunner or pre-
cursor of the green revolution [11]. We remark that the defini-
tions of second generation green revolution have also not been
unique, including nonenergy relevant definitions, such as [12],
and energy relevant definitions, such as [13].

There are two different opinions on when and who created the
term “Green Revolution.” Many people thought based on [14]
that the term “Green Revolution” were created in 1968 by the
former director of United States Agency for International De-

velopment (USAID), W. Gaud, who stated that “These and other
developments in the field of agriculture contain the makings of
a new revolution. It is not a violent Red Revolution like that of
the Soviets, nor is it a White Revolution like that of the Shah of
Iran. I call it the Green Revolution.” However, some evidences
have shown that the term of “Green Revolution” had appeared
before 1968. In 1967 [15], W. O. Reichert has recognized the
Green Revolution advocated by M. Loomis with the nonviolent
and unpolitical feature. In 1962 [16], M. J. Loomis, respected
as “the Grandmother of the Counter Culture,” addressed the re-
lationship between the impact of R. Borsodi and a number of
constructive trends on socio-philosophical thinking, where M. J.
Loomis have recognized that R. Borsodi published his opinions
about supporting peace via home- and small-scale production
on the term of “Green Revolution” [17] on July 28, 1943. In
[16], M. J. Loomis explained “Green Revolution” relevant to
the “conservation and improved methods of tilling the soil, the
use of whole, undevitalized food, good nutrition, and in many
cases, simpler diet and simple living.”

From the aforementioned discussions, the original meanings
of the term “green” are not about energy issues but more relevant
to food sustainability as well as the peace of human society
opposite to violent wars. In general, green issues have not been
uniquely defined, but it is not correct to simply treat green issues
as either EE or energy consumption reductions. We would like
to state our definition of green issues that green issues refer to
those making the world and the components both sustainable
and friendly in an environmental, economical, social, and/or
technical sense, or in an equation format as

Green = Environmentally/Economically/Socially/Technically

Sustainable + Environmentally

/Economically/Socially/Technically

Friendly, which stresses not only sustainability objectives but
also friendly characteristics to environments and human soci-
eties. We have presented the aforementioned definition of green
issues in a number of public presentations since 2011, but it is
the first time for us to formally publish this definition. We would
have more discussions on the concept of sustainability on [18].

B. Green Issues in the Big Data Era

Big data may require a large scale of data centers with huge
computing power and resources. The increase of energy con-
sumption and other resources would result in increased green-
house emissions and impacts on environments. More specif-
ically, big data generation from sensors, video cameras, and
other available data sources greatly stress the existing data gen-
eration devices. Big data acquisitions bring a lot of energy con-
sumptions for data collections as well for data transmissions in
networks. Next, conventional database software cannot properly
handle the storage of various kinds of big data. More storage
capacity is designed for big data storage, leading to advanced
technology and distributed devices with energy and resource
inefficiency. Finally, big data analytics brings the challenges
of large-scale data analytics. Parallel or distributed frameworks
and architectures are required for big data, which give rise to
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Fig. 3. Greening big data.

munication, and storage stages. As shown in Fig. 2, large volume
of data, in size of petabytes or even zettabytes, are continuously
generated from a variety of domains, such as industry, agricul-
ture, home appliance, stock market, social network, and so on.
Especially, it is inevitable that a large number of Internet of
things (IoT) devices will be connected in order to accelerate the
convergence of cyber and physical world. Former Cisco CEO
J. Chambers predicted that there will be 500 billion connected
devices by 2025. These devices may even become dominant
data sources in the future big data. Many geodistributed data-
centers from large entrepreneurs such as Google, Amazon, and
Microsoft have already deployed worldwide. Besides, many
companies also established their own private clouds, as com-
plementary to public clouds, to deal with their personal data.
Nevertheless, the collected data shall be efficiently acquired,
transmitted and stored in these datacenters for further process-
ing or analytics. Each stage in the data life cycle consumes
ineligible amount of energy and resource with the consideration
of high-volume big data. As a result, significant efforts shall be
contributed to the data acquisition, communication, and even
storage from the aspects of greenness. This has already raised
wide concern in the research community and lots of methods
toward greening big data have already been available in the lit-
erature. In Section V–VII, we summarize and discuss greening
big data on different stages, including big data acquisition, big
data storage, and big data analytics, during the whole life cycle.
An overview of our discussions in this paper is summarized in
Fig. 3.

V. GREENING BIG DATA GENERATION, ACQUISITION,
AND COMMUNICATIONS

This section would like to the issues on generation, acquisi-
tion, and communications of big data, which all are relevant to
a general sustainability issue on how to deal with high volume
of big data. One direction on handling high volumes is big data
reduction, for which there are two large categories of solutions.

1) Lossy Reduction

a) Reduce or discard unimportant or useless data: As
a recent progress, recent investigations by Ready
Labs, Inc., and Simon Fraser University have
showed Adblock Plus, a popular, open source, ad-
blocking Internet browser extension, may signifi-
cantly reduce network data demands where 25.0%
reduction in bytes downloaded and 40.0% when
video traffic considered in isolation are achieved
[26].

b) Lossy compression: This could be supported by
many source coding algorithms [27] and other signal
processing methods such as compressive sensing.

2) Lossless Reduction
a) Lossless compression [27]: Lossless compression

typically is used for the individual information or
files in an organization.

b) Deduplication [28]: Data deduplication, a special-
ized compression, performs across all the storage
system to discover and remove duplicate data and
an index maintains tracking exactly the removal
so that the information can be re-accessed when
necessary.

c) Similarity-based compression methods: As the
relevant theoretical studies to similarity-based
compression, [29] defined the compression-based
dissimilarity measure (CDM) as

CDM(x, y) =
C(xy)

C(x) + C(y)
(1)

where x and y stands for two strings, C(x) is defined
as the size of the compressed x for a given compres-
sion, and C(xy) is the size of the compressed string
for y concatenated to x. Further, [30] introduced the
concept normalized compression distance (NCD)
for a distance metric between two strings, which is
defined as

NCD (x, y) =
C(xy) − min (C(x), C(y))

max (C(x), C(y))
. (2)

Both NCD and CDM are based on the concept
of Kolmogorov complexity [31]. Recently, a fast
compression similarity measure, namely normal-
ized dictionary distance, was proposed based on
the idea of dictionary [32]. The fast compression
distance (FCD) [33] has been proposed to reduce
the high complexity of the previous methods, such
as NCD. A new faster similarity measure, called
weighted FCD, was most recently proposed in [34].

The aforementioned approaches could be also jointly used.
Xia et al. [35] discussed a joint approach with both compression
and deduplication.

A. Big Data Generations

Data generation is the first step of big data. According to
[36], main sources of big data are enterprise data, IoT data,
and biomedical data. Not all raw data generated are useful
for extracting values, and excessive data generation will cause
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